手机浏览器扫描二维码访问
在篮球场上,他和朋友正在酣畅淋漓地打球。而他每次都能投进篮筐,他的秘诀就是现场估算。没错,你猜对了。他就是运用数学知识快速计算出来的,而且误差只有一厘米。他惜时如金,我就不再说什么。埃斯皮诺萨就这样说完了。
很快,就有人进来了。他说:我叫北雁海,来自西南。相信大家都看看听过三角形数,其实就是把三边的长度的数值抽象出来。如此一来,就有四边形数等等的数。以每一组三角形数为元素就可以构成一个集合,它叫做三角形数集合。同理可以得到四边形数集合。我的问题很简单,就是三角形数集合与四边形数集合的关系。
小尼非常踊跃:首先可以排除四边形数集合不是三角形数集合的子集,那么反过来可不可以呢?在三角形数集合中有集合{3,4,5},让四边形的三条边等于3、4、5。因为它们是直角三角形的三边长度,所以它们不能两两挨着。然而,这是不可能的。这个集合是不属于四边形数集合中的一个的,因此,三角形数集合并不是四边形数集合的子集。
那么,是不是所有的三角形数集合都不是四边形数集合的子集呢?不是的。有集合s={3,3,3}是三角形数集合。令一个四边形的三条边的长度都是3,可以解得第四边。第四边的长度可以是三,也可以是四。这样就可以得到一个四边形数集合。为了叙述方便,第四边的长度为四。于是就有集合t={3,3,3,4},所以s?t。由此,我可以说一些三角形数集合是对应的四边形数集合的子集。
北雁海问:三角形数集合的全集和四边形数集合的全集中的净元素是一样的吗?什么是净元素呢?以小尼提到的集合t为例,3和4就是净元素。现在,大家开始发表自己的看法吧?
埃斯皮诺萨就说:如果三角形数和四边形数都规定为整数,那么它们的集合的净元素一定是不一样的。不过,有重合的数就是肯定的。
北雁海又说:大家觉得三角形数集合和四边形数集合的个数是一样多的吗?
埃斯皮诺萨说:三角形更加容易满足,四边形的条件相对苛刻。我认为三角形数的集合更多。
艾丽西亚说:不对。数是无限的,它是没有尽头的。在理论上,所有的多边形数的集合都是一样多的。
小尼说:我觉得这个不是表面看起来的这样。你以为三角形只有三条边,似乎条件要少一些。可是你不要忘记三角形对三边的长度有明确的规定,比如两边之和大于第三边和两边之差小于第三边。而四边形显然就没有对它边长约束的条件,所以这么看来四边形比三角形更容易构成。也就是说,四边形数集合的数量更多。
北雁海口曰:看来大家对这个问题有很大的分歧。如果有机会,我们下次讨论。
傲娇王爷宠不停魏紫风澹渊 逆袭天师 我在异界当兽医 皇神纪 魔王大人竟是我林立 掌上倾华 山里来的小帅医 苏辰唐依晨 武炼虚空 这个主角明明很强却异常谨慎 桃源小巫医 谢瑶楚寒 魏紫风澹渊 王牌团宠:小娇妻又被扒马甲了 魔兽之亡灵召唤 最强小前锋 大明:我重生成了朱允炆 贞观憨婿 开局中奖一亿,我成了资本大佬 墨北枭苏小鱼
现代第一特工穿越倚天神雕天龙,坐拥花丛的传奇故事!宁可错杀三千也不放过一个!‘穿越’,你绝对没听错。倚天神雕,美女无数,一个个冰清玉洁的清纯玉女,如何‘穿越’,还等什么?赶快点击吧!...
从小在孤儿院长大的敖问,一次意外死亡,重生为蛇,但是上天赐予他神龙进化系统这系统可以穿越万界,可以帮助他蜕蛇成龙!从此敖问为了不想平凡过完一生,开始了轰轰烈烈的进化之路。敖问可以跟人类结婚生子吗?系统你自己试试看,不就知道了吗?黑暗流无敌流装逼流微度PS胆小慈悲心勿进。...
2017最火玄幻作品,海外点推双榜第一张悬穿越异界,成了一名光荣的教师,脑海中多出了一个神秘的图书馆。只要他看过的东西,无论人还是物,都能自动形成书籍,记录下对方各种各样的缺点,于是,他牛大了!教学生收徒弟,开堂授课,调教最强者,传授天下。灼阳大帝,你怎么不喜欢穿内裤啊?堂堂大帝,能不能注意点形象?玲珑...
看书名就知道,我们的猪脚究竟要干什么!请耐心看下去,你不会失望的!京华市委书记的儿子荆天,16岁,仗着老子是京华市的一把手,在学校里是个问题学生,回到家却乖的不得了,这个两面少年,无意中从一枚祖传古戒中得到一种神奇的功法,从此之后,他的人生,发生了巨大的变化。学习成绩陡然上升,少女少妇看到他就美眸放光,将市委大院里的RQ收了之后,他便将魔爪伸向了校园,伸向了整个京华市的各个部门,只要他见到的美女,就想方设法归于自己麾下,邪恶而轻松的猎美之旅,充满着令人拍案的奇妙遭遇,是艳遇还是刻意追求?敬请期待...
军少娇宠未来大小姐由作者绵绵妙创作全本作品该小说情节跌宕起伏扣人心弦是一本难得的情节与文笔俱佳的好书919言情小说免费提供军少娇宠未来大小姐全文无弹窗的纯文字在线阅读。...
一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...