手机浏览器扫描二维码访问
埃斯皮诺萨笑着说:这次,我给大家出了一个比较难的话题。我们知道一元二次方程有时会出现无解的情况,而我就在想是不是所有最高次方为奇数的一元方程都是有解的?对此,两位怎么看?
小尼说:一元二次方程没有争议。我们来看看一元四次方程。举个最简单的例子,x∧4+1=0。对于它,我们很容易就可以得出有时一元四次方程是无解的。同理,其他的偶次一元方程也是同样的情况。结论很明显,我就不多说了。接下来,我们看奇次一元方程。还是用个最简单的,x+1=0。也就是说x=-1。我们把方程的右边的数字换成1,就得到了x+1=1。所以,x=0。以此类推,x都有解。至此,我们可以说一元一次方程都有解。同样地,也可以证明一元三次方程也是都有解的。因此,可以得出结论:所有的奇次一元方程都有解而所有的偶次一元方程则部分有解。
艾丽西亚怒道:这本来就只有这些可以说的,偏偏小尼就说完了。不过,我打算说点别的。
所有数都对应不同个数的一元方程、二元方程和多元方程,也就是说不同的数都可以通过其他的数经过或多或少的运算得到。我觉得无理数不是凭空出现的,也可以通过一个方程与其他数建立起联系。
像偶次一元方程在无解时强行求解得到的数就是方程数,当然其中的i就是大名鼎鼎的虚数。我有个大胆的猜想就是虚数与实数一样存在在现实世界里,只是我们从来没有发现而已。而虚数就是虚数空间里的数。我们为什么感觉不到虚数呢,就是因为虚数在虚数空间里。
括号方程是非整数运算思想应用到方程的结果,具体就是括号外面的次方是非整数。这种括号方程我也只是想象而已,对它根本没有任何办法。提到括号方程,我又想到了非整数方程。括号方程的展开式就是非整数方程。如果你们有兴趣,可以研究一下。
小尼和埃斯皮诺萨连忙挥手道:还是要让数学家来解决让人头疼的方程吧?
埃斯皮诺萨在纸上写下5,然后又写出几个方程。看来都是与5有关的。他停笔说道:方程告诉我们每个数都不简单,甚至一个数里就藏着数学所有的秘密。
我知道一元三次方程有求根公式,而一元五次方程就好像没有。如此可见,指数当真是最令人头疼的数学概念了。我知道大家对方程都有点心生胆怯,更别说一元高次方程和多元方程以及所有人避之唯恐不及的括号方程。
为了缓解一个尴尬的气氛,我来说一个笑话吧。在古代,有个国王。他听说数学家为一元四次方程而烦恼就哈哈大笑,并说道:不就是几个小小的数字吗?我的国家如此广大,我什么样的数字没有见过。只要让我来解方程,不出一个瞬间就可以完成了。数学家摇头叹息,而国王自信满满。可是,当国王看到题目居然被吓死了。不是说笑,而是他真的因此而死了。从此,再也没有人敢笑话数学家。事后,人们才知道真相。原来国王觉得根本无法解出方程,就装死来掩盖自己的尴尬。有了教训,国王一看到方程就吓得打哆嗦。
怎样,我的笑话可以吧?
小尼和艾丽西亚不说话,算是默认了。
埃斯皮诺萨见好就收,就宣布散会了。
大明:我重生成了朱允炆 皇神纪 傲娇王爷宠不停魏紫风澹渊 开局中奖一亿,我成了资本大佬 墨北枭苏小鱼 武炼虚空 最强小前锋 王牌团宠:小娇妻又被扒马甲了 山里来的小帅医 魔王大人竟是我林立 逆袭天师 谢瑶楚寒 这个主角明明很强却异常谨慎 苏辰唐依晨 掌上倾华 魏紫风澹渊 魔兽之亡灵召唤 我在异界当兽医 贞观憨婿 桃源小巫医
外门弟子陈宇,体内融入了一颗神魔心脏。心脏,乃生命中枢,人体致命的要害。而对陈宇来说,心脏却是防御最强的一点,并让他拥有赶超妖兽神兽的无限潜力。自此,他踏上一段波澜壮阔荡气回肠的玄奇之旅。天才如云之,天骄盖世。宗门林立之,我主沉浮。万族辉煌之,跨界大战。太古悬谜之,神话争锋。我心唯有,永恒!新书,迫切需要推...
中原武林大地北有天芳谱七朵名花,南有美人图十二美人!武林之中,侠女成风,我一出世,无一落空。皇帝本多情,情深意更浓,武林有南北,皇帝就是我。...
一场人质救援行动中,因为救援失败而一蹶不振的龙牙队员张正选择退役归隐,此后国家神秘的龙牙小组真正意义上失去了最尖锐的兵器。几年后的张正再次出现势必要将这世界搅动得天翻地覆。...
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...
为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...
格斗,医术,算命,鉴宝,泡妞无一不精。嚣张,霸气,睿智,重情,重义集于一身。水有源,树有根!他就是世界最强者的唯一门徒!从此,最狂门徒诞生!慕容2015都市新作,请大家多多支持!慕容官方交流群慕容世家167168067另,慕容完本作品特种高手纵横都市还请大家多多支持!...